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The Large Numbers Hypothesis and the 
Cosmological Constant 
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A recent generalization of Dirac's large numbers hypothesis has implications for 
the cosmological constant problem. We show that this generalization follows 
from the usual large numbers hypothesis. 

1. INTRODUCTION 

Numerical coincidences have always attracted the attention of scien- 
tists. Most local dimensionless constants have values within an order of  
magnitude or so of  unity. However, there exist a number of notable 
exceptions which have been highlighted over the years. In this paper we 
describe some of  these large numbers and their possible implications for the 
cosmological constant. 

2. LARGE NUMBERS HYPOTHESIS  

Earlier in this century, Weyl, Eddington, and Milne noticed coinci- 
dences between some very large numbers that occur in nature [Barrow 
(1981, 1990), Barrow and Tipler (1986)]. This topic is usually associated 
with the name of  Dirac (1937), who initially considered two large dimen- 
sionless numbers that could be constructed from fundamental constants 
and cosmological quantities. 

The first was the ratio of the electric to the gravitational force between 
a proton and an electron 
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The second was the age of the universe, expressed in atomic units (atomic 
light-crossing time) 

to ,-~ 1039 (2) 
N2 = e2/(meC3 ) 

Several such large ratios can be constructed (Barrow, 1990). Based on such 
coincidences between such large numbers, Dirac (1938) put forward his 
so-called Large Numbers Hypothesis (LNH), which states: 

�9 Any two of  the very large dimensionless numbers occurring in nature are 
connected by a simple mathematical relation in which the coefficients are o f  
order unity. 

Since the number N2 contains the age of the universe, an immediate 
consequence of the LNH is that any large number of the order l04~ must 
be equated to N2, and hence must be time-dependent. Thus the LNH 
provides an explanation for the existence of large numbers of the order 
(1039) n, n = 1, 2, 3 , . . . ,  as they are so large simply because the universe is 
as old as it is. To illustrate this idea further, consider the amount of matter 
in the visible universe, expressed in terms of the proton mass: 

4rc(ct)3p c3t 
- -  "" " 1078 (3) 

N - 3mp Gmp 

According to the LNH, this number must vary as t 2. 
Now, from the LNH, the number N l must vary as t. Since a variation 

of  e, mp, or me would involve conflict with quantum physics, Dirac chose 
to consider instead a variation of G with time, 

G ,.~ 1/t (4) 

The implications of such a proposal have been investigated in great detail 
[see the references in Barrow (1990) and Barrow and Tipler (1986)]. 

3. G E N E R A L I Z E D  L A R G E  N U M B E R S  H Y P O T H E S I S  

Eddington (1935) found another large number which involved the 
cosmological constant 

c (mpme'~l/2.,~ 1039 
N3 = Hoo \ - - - A , /  (5) 

where H o is the present value of the Hubble parameter. The expression (5) 
is the ratio of the radius of curvature of de Sitter spacetime to the 
geometric mean of  the electron and Compton wavelengths. Now, according 
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to Dirac's LNH, the number Na increases with time as 

N3 -~ t (6) 

Since there was no reason for Dirac to believe in a variable A, the obvious 
conclusion was that A must vanish. 

Instead of considering A = 0, Berman (1992) has proposed a general- 
ized large numbers hypothesis (GLNH) which states that 

N~ ~ N2 ~ N3 ~ x / ~  "~ t (7) 

From relations (5) and (7) it follows immediately that 

A "~ 1/t 2 (8) 

The question that arises is whether it is really necessary to postulate a 
GLNH. 

To answer this question, we note first that N3 is a large dimensionless 
number which, according to the LNH, must vary as t. This means that 
either A must vanish, as pointed out by Dirac (1938), or that A must vary 
as in (8) (Barrow, 1990; Barrow and Tipler, 1986). Hence it is not 
necessary to elevate the status of relation (5) to that of a GLNH,  since 
relation (5) is but a consequence of  the LNH. 

Second, the relationship (8) can also be derived from the LNH 
without recourse to the number in (5) (Lau, 1985). Consider Einstein's field 
equations (in suitable units) of general relativity with the cosmological 
term, 

1 
Rab -- "~ Rgab -1- Agab = GTab (9) 

where Rab is the Ricci tensor, R the Ricci scalar, gab the metric tensor, and 
Tab the energy-momentum tensor. Let us try to make these equations 
compatible with the LNH with the minimum amount of modification 
possible. The LNH requires that G be a function of time as in relation (4). 
Now the Bianchi identities and the divergenceless of the energy-momentum 
tensor are, respectively, 

Tab;b = 0 (11) 

From equations (9)-(11) we obtain 

A;bg '~b = G;b T ab (12) 

Since G is a function of time, it cannot have zero divergence, and thus 
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equation (12) implies that A cannot be constant. Thus Dirac's LNH is not 
compatible with Einstein's general relativity. The simplest assumption that 
we can make about A is that it is a scalar function of time, and it only 
remains to determine its actual time dependence. 

Let us consider the perfect fluid form for the energy-momentum 
tensor, 

Tab = (P + P)UaUb + Pgab (13) 

where p is the energy density, p the pressure, and ua the four-velocity of  the 
fluid. In cosmology, it is always possible to choose goo = - 1. Then, taking 
the "00" component of equation (13), we obtain 

T oo = p (14) 

Thus equation (12) yields 

A = - p a l  (15) 

where the overdot denotes a derivative with respect to time. 
We now only need the form of the energy density p to determine the 

time dependence of  A. This may also be derived from the LNH as follows 
(Dirac, 1938; 1979; Lau, 1985). Assuming that mass is conserved [Dirac 
(1938) also considered the case when mass is not conserved, but later 
abandoned this idea (Dirac, 1979)], we obtain 

p R s = const 

Dirac (1979) then considered the general expansion of the universe to be 
given by 

R o o t  n 

Take a particular galaxy whose velocity of  recession is 1/2 (in units in 
which the speed of light is unity). This may be written as 

= n R  1 

t 2 

Hence the distance of  the galaxy from us is t / (2n) ,  so the total mass within 
this distance is proportional to p t  3. By the LNH (3), this number must vary 
as t 2, and we then have 

p t  3 oC t 2 

or the required result 

1 
p ~ -  (16) 

t 
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From (4), (15), and (16), we then obtain our desired result, 

1 
A,,~ t- ~ (17) 

It is interesting to note that this time dependence of A provides a 
phenomenological solution to the cosmological constant problem (Berman, 
1992, and references therein). A is so small now simply because the universe 
is as old as it is. 

4. CONCLUSION 

In this paper, we have explained the LNH and some of its implications 
for cosmology, in particular for the cosmological constant problem. We 
conclude that it is not necessary to postulate a GLNH, as the so-called 
generalization follows directly from the LNH and Einstein's gravitational 
equations. 
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